
26/05/2008
www.OpenLicenseSociety.org

1

"Multicore programming"

No more communication in your program,
the key to multi-core and distributed

programming.

Eric.Verhulst@OpenLicenseSociety.org

Commercialised by:

26/05/2008
www.OpenLicenseSociety.org

2

Content

• About Moore’s imperfect law
• The von Neuman syndrome
• Why multicore, it is new?
• Where’s the programming model?
• The OpenComRTOS approach:

• Formally modeled
• Hubs and packet switching
• Small code size
• Virtual Single Processor model
• Scalability, portability, ...
• Visual Programming

26/05/2008
www.OpenLicenseSociety.org

3

Moore’s law

• Moore’s law:
• Shrinking semicon features => more functionality and

more performance

• Rationale: clock speed can go up
• The catch is at system level:

• Datarates must follow
• Memory access speed must follow
• I/O speeds must follow
• Througput (peak performance vs. latency (real-time

behaviour)
• Power consumption goes up as well (F2, Vcc)

• => Moore’s law is not perfect

26/05/2008
www.OpenLicenseSociety.org

4

The von Neuman syndrome

• Von Neuman’s CPU:
• First general purpose reconfigurable logic

• Saves a lot of silicon (space vs. time)
• Separate silicon architecture from configuration

– “program” in memory => “reprogrammable
– CPU state machine steps sequentially through program

• The catch:
• Programming language reflects the sequential nature of the

von Neuman CPU
• Underlying hardware is visible (C is abstract asm)
• Memory is much slower than CPU clock

– PC: > 100 times! (time to do 99 other things while waiting

• Ignores real-world I/O
• Ignores that software are models of some (real) world
• Real world is concurrent with communication and

synchronisation

26/05/2008
www.OpenLicenseSociety.org

5

Why Multi-Core?

• System-level:
• Trade space back for time and power:

• 2 x F > 2*F, when memory is considered

• Lower frequency => less power (~1/4)
• Embedded applications are heterogous:

• Use function optimised cores

• The catch:
• Von Neuman programming model incomplete
• Distributed memory is faster but

• requires “Network-On- and Off-Chip”

26/05/2008
www.OpenLicenseSociety.org

6

Multi-Core is not new

• Most embedded devices have multi-core
chips:
• GSM, set-up boxes: from RISC+DSP to

RISCs+DSPs+ASSP+... = MIMD
• Not to be confused with SMP and SIMD

• Multi-core = parallel processing (board or
cabinet level) on a single chip

• Distributed processing widely used in control
and cluster farms

• The new kid in town = communication
• (on the chip)

26/05/2008
www.OpenLicenseSociety.org

7

Where’s the (new) programming model?

• Issue: what about the “old” software?
• => von neuman => shared memory syndrome
• But: issue is not access to memory but integrity of memory
• But: issue is not bandwidth to memory, but latency
• Sequential programs have lost the information of the

inherent (often async) parallelism in the problem domain

• Most attempts (MPI, ...) just add a large
communication library:
• Issue: underlying hardware still visible
• Difficult for:

• Porting to another target
• Scalability (from small to large AND vice-versa)
• Often application domain specific
• Performance doesn’t scale

26/05/2008
www.OpenLicenseSociety.org

8

The OpenComRTOS approach

• Derived from a unified systems engineering
methodology

• Two keywords:
• Unified Semantics

• use of common “systems grammar”
• covers requirements, specifications, architecture, runtime, ...

• Interacting Entities (models almost any system)

• RTOS and embedded systems:
• Map very well on “interacting entities”
• Time and architecture mostly orthogonal
• Logical model is not communication but “interaction”

26/05/2008
www.OpenLicenseSociety.org

9

The OpenComRTOS project

• Target systems:
• Multicore, parallel processors, networked systems, include

“legacy” processing nodes running old (RT)OS

• Methodology:
• Formal modeling and formal verification

• Architecture:
• Target is multi-node, hence communication is system-level

issue, not a programmer’s concern
• Scheduling is orthogonal issue
• An application function = a “task” or a set of “tasks”

• Composed of sequential “segments”

• In between:
• Tasks synchronise and pass data (“interaction”)

26/05/2008
www.OpenLicenseSociety.org

10

26/05/2008
www.OpenLicenseSociety.org

11

26/05/2008
www.OpenLicenseSociety.org

12

The OpencomRTOS “HUB”

• Result of formal modeling
• Events, semaphores, FIFOs, Ports, resources,

mailbox, memory pools, etc. are all variants of a
generic HUB

• A HUB has 4 functional parts:
• Synchronisation point between Tasks
• Stores task’s waiting state if needed
• Predicate function: defines synchronisation conditions and lifts

waiting state of tasks
• Synchronisation function: functional behavior after

synchronisation: can be anything, including passing data

• All HUBs operate system-wide, but transparently:
Virtual Single Processor programming model

• Possibility to create application specific hubs &
services! => a new concurrent programming model

26/05/2008
www.OpenLicenseSociety.org

13

Graphical view of RTOS “Hubs”

Similar to Atomic Guarded Actions
Or

A pragmatic superset of CSP

26/05/2008
www.OpenLicenseSociety.org

14

All RTOS entities are “HUBs”

26/05/2008
www.OpenLicenseSociety.org

15

L1 application view:
any entity can be mapped onto any node

26/05/2008
www.OpenLicenseSociety.org

16

Rich semantics: _NW|W|WT|Async

• L1_Start/Stop/Suspend/ResumeTask
• L1_SetPriority
• L1_SendTo/ReceiveFromHub
• L1_Raise/TestForEvent_(N)W(T)_Async
• L1_Signal/TestSemaphore_X
• L1_Send/ReceivePacket_X L1_WaitForAnyPacket_X
• L1_Enqueue/DequeueFIFO_X
• L1_Lock/UnlockResource_X
• L1_Allocate/DeallocatePacket_X
• L1_Get/ReleaseMemoryBlock_X
• L1_MoveData_X
• L1_SendMessageTo/ReceiveMessageFromMailbox_X
• L1_SetEventTimerList
• … => user can create his own service!

26/05/2008
www.OpenLicenseSociety.org

17

Unexpected: RTOS 10x smaller

• Reference is Virtuoso RTOS (ex-Eonic Systems)
• New architectures benefits:

• Much easier to port
• Same functionilaty (and more) in 10x less code
• Smallest size SP: 1 KByte program, 200 byts of RAM
• Smallest size MP: 2 KBytes
• Full version MP: 5 KBytes

• Why is small better ?
• Much better performance (less instructions)
• Frees up more fast internal memory
• Easier to verify and modify

• Architecture allows new services without changing
the RTOS kernel task!

26/05/2008
www.OpenLicenseSociety.org

18

Clean architecture gives small code: fits in on-chip RAM

210499645323150Grand Total

10481220Total L1 services

184184L1 Resource List

232232L1 FIFO

104104L1 Resource

5454L1 Semaphore

7068L1 Event

44L1 Port

400574L1 Hub shared

132162L0 Port

L1L0L1L0

SP SMALLMP FULL

OpenComRTOS L1 code size figures (MLX16)

Smallest application: 1048 bytes program code and 198 bytes RAM (data)
(SP, 2 tasks with 2 Ports sending/receiving Packets in a loop, ANSI-C)
Number of instructions : 605 instructions for one loop (= 2 x context switches,
2 x L0_SendPacket_W, 2 x L0_ReceivePacket_W)

26/05/2008
www.OpenLicenseSociety.org

19

Probably the smallest MP-demo in the world

1002 + 5684138 + 520Total

1002, of which

- Kernel stack: 100

- Task stack: 4*64

- ISR stack: 64

- Idle Stack: 50

- 568

230

338

3500

- 2 application tasks

- 2 UART Driver tasks

- Kernel task

- Idle task

- OpenComRTOS full MP

(_NW, _W, _WT, _A)

0520Platform firmware

Data SizeCode Size

Can be reduced to 1200 bytes code and 200 bytes RAM

26/05/2008
www.OpenLicenseSociety.org

20

Universal packet switching

• Another new architectural concept in
OpenComRTOS is the use of “packets”:
• Used at all levels
• Replace service calls, system wide
• Easy to manipulate in datastructs
• Packet Pools replace memory management

• Some benefits:
• Safety and security
• No buffer overflow possible
• Self-throttling
• Less code, less copying,

26/05/2008
www.OpenLicenseSociety.org

21

Transparent communication

• Tasks only “communicate” via Hubs
• Real network topology

• Logical point-to-point links between nodes
• Node Rx and Tx link driver task for each link end
• Routing and gateway functionality
• Works on any medium: shared buses, “links”, “tunneling”

through legacy OS nodes using sockets, …

• Link driver tasks
• Normal OpenComRTOS application task with (TaskInput)

Port
• Driver task type per link type (UART, TCP/IP, …)
• Not present/visible on the (logical) application level

26/05/2008
www.OpenLicenseSociety.org

22

“Link” driver functionality

• Target/link specific communication
implementation
• L0_RxDriverFunction – retrieve packet from “wire”

• E.g. socket read for Win32, Linux, ..
• E.g. buffered UART communication for embedded target

• L0_TxDriverFunction – put packet on “wire”
• E.g. socket write for Win32, Linux, ..
• E.g. buffered UART communication for embedded target

• network <-> host byte ordering functions
• Normal ISR framework can be used as applicable

• But fully transparent for the application
software

26/05/2008
www.OpenLicenseSociety.org

23

Virtual Single Processor programming model

26/05/2008
www.OpenLicenseSociety.org

24

Tool support: Define Topology

26/05/2008
www.OpenLicenseSociety.org

25

Tool support: Define Application

26/05/2008
www.OpenLicenseSociety.org

26

Tool support: C code is generated

26/05/2008
www.OpenLicenseSociety.org

27

Tool support: Run and trace

26/05/2008
www.OpenLicenseSociety.org

28

Under the hood

KernelTask

DRV-T
DRV-T

Port

Port
Port

Port KernelTask

P P

26/05/2008
www.OpenLicenseSociety.org

29

Heterogenous demo set-up

• Nodes: MLX-16 – UART- AVR –USB - WIN32
- LINUX on virtual host server (via internet)

• Each “node” runs on instance of
OpenComRTOS

• Only changes are the node-adresses
• Source code everywhere:
....
L1_PutPacketToPort_W (Port1)

...

L1_SignalSemaphore_W (Sema1)

...

26/05/2008
www.OpenLicenseSociety.org

30

Conclusions

• OpenComRTOS is breakthrough “RTOS”
• Network-centric => system communication layer
• Priority or timer based scheduling => RTOS
• Formally developed
• Fully scalable, very safe, very small
• Better performance
• Portable & user-extensible
• => Concurrent programming model
• => works for any type of “multicore” target
•

• Contact:
Eric.Verhulst @ OpenLicenseSociety.org

26/05/2008
www.OpenLicenseSociety.org

31

From theoretical concept
to products

“If it doesn't work, it must be art.
If it does, it was real engineering”

